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ABSTRACT
Collaborative learning is considered a critical 21st century
skill. Much is known about its contribution to learning,
but still investigating a process of collaboration remains a
challenge. This paper approaches the investigation on col-
laborative learning from a psychophysiological perspective.
An experiment was set up to explore whether biosensors can
play a role in analysing collaborative learning. On the one
hand, we identified five physiological coupling indices (PCIs)
found in the literature: 1) Signal Matching (SM), 2) Instan-
taneous Derivative Matching (IDM), 3) Directional Agree-
ment (DA), 4) Pearson’s correlation coefficient (PCC) and
the 5) Fisher’s z-transform (FZT) of the PCC. On the other
hand, three collaborative learning measurements were used:
1) collaborative will (CW), 2) collaborative learning product
(CLP) and 3) dual learning gain (DLG). Regression analy-
ses showed that out of the five PCIs, IDM related the most
to CW and was the best predictor of the CLP. Meanwhile,
DA predicted DLG the best. These results play a role in de-
termining informative collaboration measures for designing
a learning analytics, biofeedback dashboard.

CCS Concepts
•Information systems → Data analytics; Data min-
ing; •Applied computing → Collaborative learning;
•General and reference → Empirical studies; Metrics;

Keywords
learning analytics, biosensors, electrodermal activity, collab-
orative learning, physiological coupling indices
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Collaboration is regarded as a critical 21st century skill
[53]. Labor market demands team players as today’s chal-
lenges require professionals to work with each other. The
earlier students start developing collaboration skills the sooner
they will be able to incorporate them to everyday life and
work. The interest in collaboration therefore concerns the
students of today and workforce of tomorrow, teachers and
researchers as the most direct stakeholders. Studies on col-
laborative learning have shown that collaboration promotes
important cognitive activities, such as question asking, elab-
orating own understanding, argumentation of various points
of views and conclusion making [34]. Research has also
shown that collaborative learning is not self-evident and that
true collaboration is infrequent [3]. Reaching high-level cog-
nitive processing is a demanding task [29], and cognitive
challenges tend to cause tension and increase the poten-
tial for both socio-emotional conflicts and poor collabora-
tive learning experiences [36, 2]. More is needed to know
about these socio-emotional and cognitive interaction pro-
cesses, and new methodological solutions may offer what the
earlier have not achieved. The measurement of collaboration
in general is a challenge as such, as there are not enough in-
dicators available so far. Operationalizing collaboration is
not a straightforward process and there is not a single way
to do it [16].

This paper approaches the collaboration quantification
through Learning Analytics (LA) [54] and physiological data
from biosensors. LA is the measurement, collection, analysis
and reporting of learning data. It leverages information visu-
alization, learning sciences, software engineering, statistics
and data mining methods for providing feedback and aware-
ness of the learning process. The interest in LA concerns a
broad variety of roles: “researchers in education, leaders and
policy-makers, educational practitioners, organisational ad-
ministrators, instructional designers, product vendors, and
[...] the learners themselves” [7].

The LA field started to develop from the bulk of digi-
tal traces that came with the Massive Open Online Courses
(MOOCs). Together with the open access to high quality ed-
ucational resources, the MOOCs’ user-transparent tracking
capabilities started to produce learning datasets of unprece-
dented dimensions. To tackle the necessity of turning the
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raw data into useful information and present it in friendly,
relevant ways, the multidisciplinary field of LA emerged.

LA techniques are a powerful tool for sense-making of ed-
ucational data [49]. This study on collaborative learning
features applies LA to an increasingly available [51] data
modality: physiological data. Activity from the cardiovascu-
lar and electrodermal systems — just to name the two most
popular physiological data sources in psychological studies
[30] — has been linked to diverse cognitive, emotional and
behavioural processes at both within- and between-subject
research. We believe that tracking physiological data in
learning situations can enrich the LA field, which has been
mainly focused so far on digital traces.

Concurrently, collaborative learning research has relied
on analysing transcribed verbal interactions and using self-
reporting questionnaires [16]. There is a potential for com-
plementing subjective reports with objective physiological
data [11]. Wearable biosensors are gaining popularity in
everyday life mostly for sports and fitness activity track-
ing. Despite not being their primary purpose to date, these
biosensors can also be used to study the cognitive and affec-
tive domains of learning [46]. Physiological measures can be
informative both at individual and group levels, each having
a set of usages [11]. Therefore, we envision an application
to monitor the learning process with wearables to provide
timely feedback to the teacher and/or the learner. Before
that promising future, extensive research is needed in three
dimensions: 1) the physiological responses relevant for the
learning process, 2) the significant features extractable from
them, and 3) the learning-related psychological states they
can describe. The field has been called Wearable Enhanced
Learning1 (WELL) and the architecture has been referred
to as sensor-based platforms [46].

There is a number of physiological responses. The multi-
sensor wristband used in the experiment allowed for the
recording of Blood Volume Pulse (BVP), electrodermal ac-
tivity (EDA) and skin temperature. This study considers
EDA. It is an easy measurable, sensitive response [12] that
previous studies have linked to arousal [11, 38], attention
[55], task engagement [40], and cognitive load [48], among
others.

The notion of a relationship between the physiological re-
sponses of two individuals interacting with each other has
been long scientifically explored [31]. Little or no agree-
ment on how to call this physiological relationship has been
reached. The diverse nomenclature found includes (chrono-
logically sorted): physiological linkage [31], physiological
compliance [50], physiological synchronization [24], physio-
logical correlation [15], joint changes in the physiological sig-
nals [25], physiological coupling [11] and physiological mark-
ers of togetherness [39]. From now on, this paper uses phys-
iological coupling (PC) for the idea of influence it suggests.
PC has been proposed for the assessment of social interac-
tions and as a direct feedback [11].

To measure PC several indices have been used [35], six
to our knowledge. [15] presented Signal Matching (SM),
Instantaneous Derivative Matching (IDM) and Directional
Agreement (DA). Pearson’s correlation coefficient (PCC)
has also been employed [23] as well as a variation: its Fisher’s
z-transform (FZT) [9] (i.e. the inverse hyperbolic tangent of
the PCC). Weighted coherence (WC) was developed by [44]

1http://ea-tel.eu/special-interest-groups/well (Last ac-
cessed: 20/10/2015)

for frequency domain analysis.
This study obtained five of those PCIs — SM, IDM, DA,

PCC and FZT — from pairwise EDA time series to explore
for the first time their ability to predict three collabora-
tive learning features: 1) collaborative will, 2) collaborative
learning product and 3) dual learning gain. The best pre-
dictor for each was determined among the five PCIs.

Our near future goal is the design and development of a
biofeedback dashboard for monitoring collaborative learn-
ing with physiological data. Thus, apart from its value in
the quantification of three collaboration features, this explo-
ration is useful as a first step in determining those PCIs more
informative for the dashboard and what they may signal.

The remainder of this paper is as follows. Section 2 moti-
vates the physiological signals application to learning. Sec-
tion 3 details the experimental design, data collection and
processing. The results coming out of the analysis are dis-
cussed in section 4. Finally, conclusions and agenda points
for further research are stated in section 5.

2. RATIONALE
Biosensors are in a process of democratization. General-

purpose, low-cost, biosensors are increasingly available and
becoming part of everyday life [51]. Technology has made
possible the integration of a variety of sensors in a sin-
gle device thanks to the progress in nanotechnology, low-
power electronics and biosensor design [21]. Final prod-
ucts in this category include, but are not limited to, smart-
watches, wristband sensors, wearable sensor patches, and
smartclothes. The multi-sensor approach is a trend in the in-
dustry and the combination of cardiovascular activity, tem-
perature, motion and EDA sensors has been regarded as the
next-generation multi-sensor standard [51].

The physiological responses that biosensors record are orig-
inated in the nervous system, of which a simplified view is
presented in figure 1. There are two big groups of physio-
logical responses depending on whether they are controlled
by the Central Nervous System (CNS) or the Autonomic
Nervous System (ANS). The CNS controls the brain and
the spinal cord. The ANS innervates the electrodermal,
cardiovascular and respiratory systems. ANS responses of-
fer a great potential for research and physiological comput-
ing since their measurement mechanisms are cheaper, faster
and more unobtrusive than those of the CNS responses [38].
However, their easy measurement contrasts with the chal-
lenge that their intricate interpretation represents. Inter-
pretation is inextricably linked to context as several stimuli
can produce the same physiological responses [8].

Figure 1: Nervous system simplification.
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This paper considers the electrodermal system responses
during a collaborative learning task. EDA phenomenon and
measurement were first proposed in 1888 by Féré, who dis-
covered a change in skin electric conductance elicited by
external stimuli [18]. The increase in skin conductivity is
caused by a sweat increment. Sweat production is induced
by thermoregulatory and psychological mechanisms as well
[12]. Therefore, a constant room temperature of 23 ◦C is rec-
ommended [5] to measure EDA produced by psychological
sweat, the one of interest in psychophysiology.

Psychophysiology is the discipline that studies the infer-
ence of psychological states from physiological responses.
The psychological states comprise cognitive, emotional, and
behavioural phenomena [8]. The first systematic work in
psychophysiology is considered to be the 1915 publication
“Bodily changes in pain, hunger, fear and rage”by the Amer-
ican physiologist Walter Bradford Cannon, a pioneer in the
study of the physiology of emotions [6]. Science is since
looking for an improved understanding of the physiological
footprints that psychological mechanisms leave.

The psychophysiological process is depicted in figure 2.
The human body produces physiological responses as a re-
sult of its own functioning or upon external stimuli. The
physiological responses can be recorded into physiological
signals by means of biosensors. Different sampling rates (i.e.
number of measurements per time unit) are used depend-
ing on the response and the application (see table 4 for the
ones used in the experiment). Examples of physiological sig-
nals are EDA, electrocardiogram (ECG), electrooculogram
(EOG), electromiogram (EMG) and electroencephalogram
(EEG), among others. The same physiological response can
be recorded as different physiological signals depending on
the biosensor used. Thus for example, cardiovascular activ-
ity can be recorded as ECG or as BVP signals depending
on whether an electrocardiograph or photoplethysmograph
sensor are used respectively.

Every signal in turn has a number of physiological fea-
tures. The features can be descriptive statistics such as the
mean and the standard deviation, or signal-specific such as
the heart rate extracted from either the ECG or BVP sig-
nals, or the Skin Conductance Level (SCL) and Skin Con-
ductance Response (SCR) extracted from the EDA signal.
Statistical features are clearly common to all the signals,
while the number of signal-specific features varies from sig-
nal to signal. Typically, studies use from a couple to less
than a dozen features, but at least 128 features from 4 sig-
nals have been used [19]. This provides a rough idea on
how many features are extractable from physiological sig-
nals. Physiological features can be extracted both at indi-
vidual and group levels. The physiological features are the
final numbers to be interpreted so as to determine the psy-
chological state. Either the number or the interpretation
could be provided as biofeedback in applications.

A scientific review of research on the physiology of emotion
[30] reported that the most common physiological responses
used in the field are heart rate and EDA in that order.

There is widespread documentation on EDA proportion-
ality to arousal (psychological activation) [38]. Significant
differences in EDA have been observed between pleasant and
unpleasant stimuli, that is, it can indicate valence [11]. EDA
is highly sensitive to the novelty, intensity and perceived sig-
nificance of stimulus [55]. An increase in cognitive load has
also been reported to have a match in EDA rise. These are

Figure 2: Biofeedback process (adapted from [38]).

just examples of EDA expressiveness at the individual level.
The computer science field has been attracted to psy-

chophysiology. Affective computing [41] is devoted to the
variety of applications of machines able to recognize and
properly respond to human emotions. It is based on the
principle that no intelligent system is possible without emo-
tions. Physiological computing [17] is a generalization of
the affective computing field to include also cognitive com-
puting, aimed at increasing user performance in contrast to
the improved user satisfaction goal of affective computing.
Although the very high complexity of psychophysiological
inference and validation remains a hurdle, it has been sug-
gested that even low accuracy psychophysiological inferences
may be informative [11]. Potential applications would be
ground-breaking and paradigm-changing [38], and learning
might not be an exception.

Applications to the learning area include, but are not lim-
ited to, interaction support [11], feedback [46], intelligent
tutors [1], the current educational challenge of formative as-
sessment [45], intervention [14], teacher training [22], emo-
tion recognition in e-learning [47] and self-regulated learning
[37]. A recent review on sensor-based platforms [46] did not
identify prototypes purposely focused on learning applica-
tions. Nevertheless, most prototypes were found to have
capabilities relevant to at least one of the three learning do-
mains [4]: cognitive, affective and psychomotor. Therefore,
there is a need for and a lack of research on how can biosen-
sors leverage the learning process [46, 47] at both individual
and group scales.

PCIs and collaboration
At group level the physiological features are the PCIs, dif-
ferent indices to measure the relationship between the phys-
iological signals of individuals within the group. Six PCIs
have been used in research to our knowledge: SM, IDM,
DA, PCC, FZT and WC. Signal Matching (SM) accounts
for the pairwise difference between the signals once they
have been normalized. The need for normalization comes
from the fact that physiological signal levels are strongly
dependent on individual characteristics [12]. Instantaneous
Derivative Matching (IDM) compares the rate of change of
physiological signals from a dyad by means of the derivative.
Directional Agreement (DA) represents the per cent of data
points going in the same direction across individuals (i.e.
going up, down or staying constant at the same time). It
is the most basic PCI. The Pearson’s correlation coefficient
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(PCC) determines the strength of the linear relationship be-
tween the physiological signals from two individuals. The
Fisher’s z-transform (FZT) is a transformation of PCC —
by applying the inverse hyperbolic tangent — so as to obtain
a normally distributed index. FZT is basically the same as
PCC for values between -0.5 and 0.5. Weighted Coherence
(WC) is a frequency domain PCI and therefore more useful
for periodic physiological responses such as the heart beat
and the respiration rate. Since EDA is the signal this study
is focused on and it is not a periodical signal, WC has not
been considered.

According to each PCI definition, the higher the values the
higher or lower the PC. This direct or inverse relationship is
summarised in table 1, together with the property that each
PCI measures. By definition, PCIs are mostly computed
pairwise, being DA the exception. DA can be calculated
for as many individuals as desired. PCIs can be obtained
on either an instantaneous or aggregated basis. Aggregated
can be either for time windows, say for example 65s as in
[15], or for the whole measurement session. They can all be
aggregated but not all can be computed on an instantaneous
basis. PCC and FZT are meaningless calculated for a single
instant. Although in this study aggregated values for the
whole collaborative learning task are used for the prediction
of collaboration features, instantaneous values might have
the power to detect particular points of interest in the study
of collaboration. It has been claimed that understanding
the underlying mechanisms of collaborative learning requires
research to zoom in the collaborative interactions [13].

Table 1: Summary of PCIs meaning
PCI Interpretation Value PC

SM difference lower higher
IDM rate of change lower higher
DA direction higher higher
PCC linear relationship higher higher
FZT weighted mean PCC higher higher

PCIs can play a role in studying the social interactions
[11] by providing an objective measure, although research
in this direction remain scarce. A relatively small number
of studies has focused on the PC phenomenon [25], as most
of the research carried out in psychophysiology and applica-
tions has targeted the individual rather than the group level
[11]. Although insufficient, psychophysiological research for
collaboration has proved promising.

Evidence has been found for a connection between PC and
team performance [35], with PCC and DA of cardiovascu-
lar activity being the most sensitive indices to differences
between low and high performers [15]. PCC of heart rate
in dyads has been reported to predict task completion time
[23]. Also in dyads, PC has been associated to interaction
and self-reported social presence [25, 10]. Conflicting in-
teractions have been reflected in a significantly higher PC
increment than that of collaborative interactions by means
of the PCC index [10]. The directionality of the PC might
point to who is the group leader [11]. Some of the collabora-
tion features studied from the PC phenomenon perspective
are listed in table 2 together with the PCIs employed.

Physiological signals are valuable social cues for the study
of collaborative learning. Different collaboration features
have been previously studied. This paper enriches the field

Table 2: Some collaboration features studied
through PCIs
Collaboration feature Study PCIs

Team performance [15, 35] SM, IDM, DA, PCC
Interaction [25] PCC, WC
Task completion time [23] PCC, WC
Conflicting interactions [10] PCC
Team work [22] PCC, WC

with three collaborative learning specific features that have
not been approached through PCIs before.

3. METHOD
Based on the exposed rationale, we post the research ques-

tions:

1. Which PCI reflects better the collaborative will?

2. Which PCI predicts the collaborative learning product
and the dual learning gain the best?

At this point it is convenient to remember that the PCIs
are calculated on a certain physiological response — EDA
in this study. Therefore, it has to be kept in mind that here
the answer to the research questions is linked to and valid
only for the EDA signal. Further studies are needed for the
comparison of PCIs across different physiological responses.

3.1 Setting
An experiment was conducted in the University of Oulu’s

Learning and Interaction Observation Forum (LeaForum2).
This state-of-the-art research infrastructure was designed as
a roomy, cosy space for up to 30 people. It is a convertible
facility with flexible fittings to allow provision for different
group situations. LeaForum is equipped with:

• a proprietary observation and recording system [27];

• trapezoidal tables convenient for group work;

• 14 tablets connected to the Internet via Wi-Fi;

• 6 Empatica S3 biosensors [20];

• 2 eye tracking glasses; and

• a backstage room prepared to follow the experiments
in real time through the live video signals.

The video recording system is able to collect 360◦ video
and high-quality audio from multiple microphones. The
trapezoidal tables allow for a suitable and comfortable group
setting, as they form an heptagon when seven of them are
sided consecutively. In front and close to each team’s ta-
bles, there was a table supplied with a variety of food items
(cardboard boxes, plastic bags, fruits...) relevant for the
task.

The tablets enabled the students to take pictures, search
information on the web, respond to online questionnaires
and access weSPOT [33], the virtual learning environment
(VLE) used. WeSPOT is a working environment with social
and personal open tools for Inquiry Based Learning (IBL).

The Empatica S3 wristband is a multi-sensor device es-
pecially designed for research purposes. Four sensors come
embedded: 1) a photoplethysmograph (for cardiovascular

2http://leaforum.fi (Last accessed: 20/10/2015)
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activity), 2) a thermometer, 3) an accelerometer, and 4) an
EDA sensor. Two modes of operation are available: 1) real
time Bluetooth streaming and 2) internal memory recording.
The latter was used. Ambient temperature in LeaForum is
usually controlled by means of a thermostat to be 23◦C, the
recommended temperature to measure EDA [5].

3.2 Participants
Participants in the experiment were 48 high-school stu-

dents from the University of Oulu’s Teacher Training School.
Students came from six different classes and were aged 16
to 19. Gender distribution was 27 females and 21 males. No
previous knowledge was required. The task was coordinated
with their science teachers so that it was included within
their course work, meaning it did not supposed extra effort
for the students. Participation in the study was voluntary.

3.3 Task description
The task design in close collaboration with the students’

science teachers ensured that it was aligned with their cog-
nitive level. It also made it meaningful for their current
studies. The experiment was run four times. The task was
the same but two levels of scripting were used: guided and
unguided — two runs each.

The task consisted in the design of a healthy, appropriate
breakfast for an athlete training for a marathon. The spec-
ification of parameters included age, height, weight, daily
caloric intake, number of weekly trainings and session length.
Students were provided with two Google-DocsR© files: a
document and a spreadsheet. For both guided and un-
guided runs, the document contained a general description
of marathon runners’ nutritional needs. The spreadsheet
had a template with rows for food items and columns for
the weight (in grams) of the different nutrients contained by
the food item. Several examples were provided.

The unguided task required students to search on the In-
ternet which and how much of each nutrient a marathon
runner needs for breakfast. They were asked to write their
most relevant findings on the nutrients and their function.

In the guided runs of the experiment the provided doc-
ument already contained the recommendation for the com-
position of the athletes’ breakfast in per cent of each nu-
trient, energy consumption of marathon runners as well as
the description and organic role of nutrient categories such
as carbohydrates, proteins, minerals and fat. Students were
prompted the steps to follow through the VLE. The steps
according to the IBL paradigm were 1) plan the design
method, 2) set the criteria, 3) collect the data, 4) discuss
the findings, and 5) communicate the results.

3.4 Procedure
A pre-test and a Motivated Strategies for Learning Ques-

tionnaire (MSLQ) [43] were applied to the participants two
weeks in advance to the laboratory experiment. The aims
were on the one side to have a preliminary evaluation of
students previous knowledge on the task subject, motiva-
tion and attitudes towards learning; and on the other side
to have a group formation criterion. The MSLQ question-
naire is considered a social-cognitive view of motivation and
self-regulation of learning. Students’ scores in each of the
two tests were categorized in low, middle and high. These
categories were then used as the basis to form the groups as
heterogeneously as possible.

Students were organized in 16 triads for the collaborative
task. Due to LeaForum capacity and the number of avail-
able biosensors, the experiment was run four times in two
consecutive days, a morning and afternoon run each day.
The unguided task was used in the first day’s sessions. On
the contrary, second day’s sessions were carried out with the
guided task.

Every session lasted for two hours (on task) and fifteen
minutes (preparation). At the beginning of each session,
the students were introduced to LeaForum and its equip-
ment, especially the sensors they were to wear throughout
the task. Each student was provided with a tablet and a
microphone for the videotaping. Two students in separate
groups were wearing eye-tracking glasses each run. The six
biosensors available at LeaForum allowed for the physiolog-
ical tracking of two groups each session. After the sensor
familiarization, the collaborative learning task together with
the VLE were explained. Having completed the task under-
standing phase, students started to work with their groups.
During the whole experiment, two researchers from the team
were around to handle possible issues with the task or the
equipment. The rest of the research team was following the
experiment from LeaForum’s backstage room, prepared for
observation without causing disturbance or distraction to
students.

Upon task completion, students delivered a report with
their solution via the VLE. Finally, they were asked to take
the post-test.

3.5 Collected data
The number of sensors available formed a limitation for

tracking every student. In addition, as the task was collab-
orative, not all the students interacted with the VLE (task
distribution). From the capability to track the physiolog-
ical responses of 24 students (6 biosensors ∗ 4 runs), the
real number was reduced to 20 due to four cases of device
misplacement. Those 20 were the students we finally con-
sidered for this study from the experiment data focused on
EDA. The total number of students in each data modality
collected is specified in table 3.

Table 3: Students tracked in each data modality
Data modality Students

Pre-, post- and MSLQ questionnaires 48/48
Videotaping 48/48
VLE activity logs 33/48
Wristband biosensors 20/48
Eye-tracking 8/48

At the group level, data from the biosensors is distributed
as follows: 5 groups with all three members tracked, 2 groups
with two out of the three members tracked and 1 group
with a single member tracked. The latter cannot be used
therefore to measure collaboration, but it can be compared
to students working in other groups during the same session
for contrasting the PCIs of people working together with
those of people working simultaneously but in other teams.

The dimensions of the data appear in table 4. The sample
frequency specifies the number of measurements the biosen-
sors collect every second. Thus for example, EDA data for
each participant adds up to around 28,800 samples (tak-
ing four samples a second during approximately two hours).
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Considering the 20 participants tracked with this data modal-
ity, accounts for over half a million records.

Table 4: Physiological data dimensions
Data Units Sample frequency (Hz)

Temperature ◦C 4
EDA µS 4
BVP nW 64
Accelerometer 1/64g 32
IBI s —
Pupil diameter mm 64

BVP is the direct measure coming from the photoplethys-
mograph sensor. BVP peaks indicate a heart beat. Using
the BVP signal an Empatica proprietary algorithm extracts
the interbeat interval (IBI) (i.e. the time in between two
consecutive heart beats), from which in turn heart rate is
calculated.

From the data collected, figure 3 is very illustrative of the
power of EDA data. There, the EDA signals have been syn-
chronized first among themselves and then with the video.
The figure shows shadowed an interval where there is an
almost simultaneous peak in the three EDA responses. A
video inspection reveals that the peak occurs at the time
the team feels that something has gone wrong with the VLE,
that is, a technical challenge. It is also seen in the image
that the student in the middle has taken his hands to his
head, signaling thereby that he is worried. The figure shows
also the individual differences in the level of the EDA sig-
nal. As it has been stated before, EDA is strongly dependent
on individual characteristics, and so are other physiological
responses.

Figure 3: Challenge-driven team EDA peaks.

3.6 Data processing
Data processing steps are summarized in figure 4.
After the collection the data had a high degree of sparsity.

Different sources usually imply different formats. Even raw

Physiological data Pre-processing

Individual syncingArtifact detection

Normalization Group syncing

PCI calculationCorrelation

Figure 4: Physiological data processing.

data coming from the same source may be separated. This is
the case of the biosensors. The five magnitudes they provide
(first five rows in table 4) are each saved to a different file.
File format is typically comma separated values (CSV) with
a first row indicating the start recording time, a second row
displaying the sample frequency and the remaining rows for
the measured values. First step is therefore to have the
data in such a way that every value is time stamped for
each magnitude and participant (pre-processing).

The synchronization of multimodal data and even within
the same data modality is a challenge [11, 28]. It is also
a core process for the exploration of PCIs as they rely on
responses happening at the very same instant. Otherwise
the results would not be reliable. Mostly manual synchro-
nization was performed in the data processing. Automated
mechanisms are under study for the goal of a timely, learning-
oriented, biofeedback dashboard.

We chose to begin the physiological signals synchroniza-
tion within individuals with a magnitude sampled at 4Hz,
which is the maximum common divisor of the sampling fre-
quencies in table 4. Thus, starting with temperature, the
physiological signals were synchronized using Microsoft Ex-
cel VLOOKUP function one participant and signal at a time
(individual synchronization).

Biosensor recordings may include artifacts as a result of
a variation in the contact between the skin and the sen-
sor due to pressure, excessive movement, or adjustment of
the device [52]. There is a need to detect those artifacts
to prevent wrong data from distorting the analysis. Three
free applications were found for the processing of EDA data:
Ledalab [26], EDA Explorer [52] and PsPM3. Ledalab allows
for the manual detection of artifacts. PsPM does not in-
clude this feature either in manual or automatic way. EDA
Explorer automatically detects artifacts based on 5-second
epoch classification. EDA Explorer was therefore used to
categorize EDA data points into signal or noise (artifact de-
tection). As a result, 90% of the EDA data (490,880 from
547,848 records) was classified as correct and the remaining
10% was taken out of the analysis.

The strong dependence of EDA values on individual char-
acteristics makes a normalization process necessary for com-
parability — at least for the level-dependent PCIs. EDA sig-
nals are then brought to a baseline. Normalization was done
by computing the t-scores (i.e. subtracting the sample mean
from every value and then dividing by the sample standard
deviation). Both sample mean and standard deviation were
computed on an individual basis.

3http://pspm.sourceforge.net (Last accessed: 20/10/2015)
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To explore the collaboration through physiological responses,
a second synchronization has to be done to align the data
across individuals. The group synchronization is carried out
on a session basis, meaning for all the individuals tracked
with biosensors within a session.

The indices SM, IDM and DA were computed according
to [15]; PCC with lag 0 as in [23] and FZT following [9].
PCIs were obtained pairwise for all team member combina-
tions (AB, AC and BC) to ensure a greater index reliability
[22]. The instantaneous values were then aggregated as the
arithmetic mean throughout the collaborative learning ses-
sion. The mean over a certain time period is a commonly
accepted physiological feature [38]. As a result of the whole
process, five 21x21 matrices were obtained, one for each PCI.

3.7 Collaborative learning measures
Three collaborative learning measures (CLMs) were used

in the study: 1) collaborative will (CW), 2) collaborative
learning product (CLP) and 3) dual learning gain (DLG).

The predisposition to collaborate in a learning task, that
is, the CW, was measured using the peer learning scale of
the MSLQ questionnaire. MSLQ is a widely used self-report
instrument with 81 items distributed in two sections — mo-
tivation and learning strategies — with 6 and 9 scales re-
spectively. Students’ rate ranges from 1 (not at all true of
me) to 7 (very true of me). The peer learning scale com-
prises three items — numbers 34, 45 and 50 — in which the
students rate their willingness to explain learning material
to their team members, work together with others to com-
plete a learning assignment and discuss task material with
the team. Individual MSLQ scales are analysed by averag-
ing the ratings of the different items the scale is comprised
of. Therefore, the CW measured in this way ranges from 1
to 7, just as the individual items.

The CLP was measured by the score of the report deliv-
ered by the students after the task. The report included two
files: 1) a document with their task notes and conclusions,
and 2) a spreadsheet with their task solution. The assess-
ment criteria involved the diversity of the solution (number
of nutrients considered), depth of the answer, accuracy and
focus on the problem. The scoring scale ranges from 4 to 15
points.

The individual learning gain was computed by subtracting
pre-test from post-tests scores. DLG was then calculated as
the sum of the individual learning gains.

4. ANALYSIS AND RESULTS
Figure 5 shows in a scatter chart with smooth lines the

pairwise PCI values and the CLMs sorted from left to right
by descendent CLP. The figure illustrates nearly the same
behaviour between FZT and PCC. Therefore, they may be
considered redundant PCIs and it is simpler to use PCC
instead of FZT, as FZT is a derivative measure of PCC and
thus requires further calculation, which in turn translates
into no added benefit.

With the five PCIs computed on the one side, and the
three CLMs on the other side, fifteen regression analyses
were performed pairwise (see figure 6). The aim was to
explore the power of every PCI to predict each CLM and
thereby being able to answer the research questions. The
results are summarized in table 5.

In addition, a regression analysis was performed between
pre- and post-test scores. High correlation (0.86) was found

between the two tests, with the pre-test score being able to
predict 74% of the post-test scores variance. The regression
line obtained is displayed in figure 7. The line has a positive
slope (0.70), indicating that in general there was a positive
learning gain for participants in the experiment.

Table 5: Correlations in the regression analyses
CLM SM IDM DA PCC FZT

CW 0.01 0.50 0.12 0.09 0.09
CLP 0.13 0.59 0.12 0.32 0.35
DLG 0.27 0.20 0.70 0.17 0.17

In general, weak correlation (below 0.3) was found among
the PCIs and the CLM. IDM showed a moderate to strong
correlation with the CW (0.5) and the CLP (0.59). IDM was
therefore the best predictor for those CLMs. DA revealed
a strong correlation to the DLG (0.7), meaning it explains
almost half of DLG variation (determined by the square of
the correlation coefficient). This might indicate that while
the linearity (i.e. proportional changes) in the EDA of stu-
dents learning collaboratively appears to have no predictive
power, the direction in which the signals are changing could
tell about the resulting learning gain.

Once again the simplest solution proved to be the better.
DA is the simplest of the PCIs, yet it yielded the highest
correlation in the regression analysis. This is in agreement
with former studies finding DA as the most sensitive PCI
to differences in team performance [15]. It is also the most
powerful at group level by enabling the computation of one
index for all the members and not only pairwise, which is a
common limitation of the other PCIs. In addition, DA does
not require normalization thanks to its level independence,
being just driven by the direction of change as the name itself
implies. All of this means that DA can get to a dashboard
quicker than its counterparts, making it the most suitable
PCI for real time applications.

It is also worth stating that this study is not without its
limitations. The sample size was bounded by the number of
biosensors available. Also, the experiment was conducted in
a laboratory setting, which differs from the students’ nat-
ural learning environments. The EDA signal was recorded
from a single wrist — as in the overwhelming majority of
studies using EDA, but research has shown that EDA is an
asymmetrical response (i.e. it manifests different in left and
right hemispheres) [32, 42]. Therefore, recording EDA in
the two wrists might offer additional information.

5. CONCLUSIONS AND FUTURE WORK
A physiological approach to collaborative learning research

has been presented. This study used the EDA records from
the rich multimodal dataset produced in the experiment.
EDA, a measure of psychological sweat if temperature is
kept constant, has been linked in former studies to cognitive
and emotional processes. Here, five PCIs were calculated
from the EDA of students working collaboratively to inves-
tigate for the first time their possible connection to three
collaborative learning features. The best predictor for each
of the latter was obtained from the PCIs: IDM for the CW
and the CLP; and DA for the DLG.

Further studies on the applications of EDA to the learn-
ing sciences should consider the laterality effect. Lateral
measures need to be compared and correlated to learning
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Figure 5: PCI and learning measures.

Figure 6: Pairwise regression analyses.

Figure 7: Post- vs. pre-test regression line.

outcome indicators. It may result that measurements from
one side are more significant or sensitive in a learning con-
text. But it may also turn out that none of them could be
safely ruled out.

EDA is valuable as a highly sensitive index of psychologi-
cal activation, but other physiological responses also deserve
to be explored. The PCIs predictive power is likely to vary
across physiological responses, and it is of interest to find
out which physiological response maximizes the PCIs corre-
lation to different learning features.

Research is needed with focus on whether there is a PC
among people in a collaborative setting. An experiment de-
sign might be to track the physiological signals of a num-
ber of individuals working alone. Then, the individuals are
asked to work in groups. The physiological responses in the
two situations can be compared to find changes. The con-

trast of PCI values alone and in group can tell if the PC
phenomenon occurred.

As biosensors are becoming more and more common in
everyday life, we believe that they can increase the acces-
sibility to a data source with potential to enrich the LA
field. They can be used as input for a learning-oriented
biofeedback dashboard in a computer supported collabora-
tive learning (CSCL) context. Such a dashboard is the next
milestone in our research agenda.
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électrique sous l’influence des excitations sensorielles
et des emotions. Comptes Rendus des Séances de la
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